УДК 634.11: 574.2: 631.541: 631.172

ЭНЕРГЕТИКА БИОСФЕРЫ И ЭНЕРГЕТИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ПЛОДОВОДСТВА

Лебедева Е.Н. 1 , канд. с.-х. наук, **Бобрович Л.В**. 2 , д-р с.-х. наук, **Трунов Ю.В**. 1 , д-р с.-х. наук

¹ ФГБНУ «Всероссийский научно-исследовательский институт садоводства имени И.В. Мичурина» (Мичуринск)
²Федеральное государственное бюджетное образовательное учреждение высшего образования «Мичуринский ГАУ» (Мичуринск)

Реферам. Приведены сравнительные результаты энергетической оценки различных технологий получения посадочного материала яблони, разработанных кафедрой плодоводства МичГАУ и ВНИИ садоводства им. И.В. Мичурина. Установлена их общая энергоемкость и выявлены наиболее энергоемкие статьи затрат.

Ключевые слова: энергетика биосферы, яблоня, посадочный материал, энергетическая оценка, окулировка, зимняя прививка

Summary. The comparative results of energetic evaluation of various technologies of planting material developed by the department of fruit-growing of Michurinsk State Agrarian University and I. V. Michurin Russia Research Institute of Horticulture are given. Their total energy intensity has been determined and the most power-consuming items of expenditures have been revealed.

Key words: energy of biosphere, apple-tree, planting material, energetic evaluation, budding, winter grafling

Введение. В соответствии с учением В.И. Вернадского (1863-1945) первоисточником, породившим биосферу, является космическая лучистая энергия, а живое вещество Земли является планетарным событием космического характера, оно выступает как своеобразный накопитель и трансформатор лучистой энергии мирового пространства [1].

Так, живое вещество в форме зеленого растительного мира накапливает энергию, которая может сохраняться миллионы лет в виде различных топливно-сырьевых ресурсов (газа, нефти, угля, торфа, урана и т.д.). Биосфера и любой биогеоценоз из-за колебаний параметров их окружения стремятся занять более устойчивый энергетический уровень с меньшими колебаниями продукционного процесса, при этом часто происходит снижение его величины. Развитие информации, усложнение структуры биосферных образований направлены на увеличение их приспосабливаемости и адсорбции энергии и вещества, то есть на повышение своего энергетического уровня в конкретных условиях и не в ущерб его стабильности. Учение об эволюции биосферы подводит нас к тому, что человек должен, с одной стороны, уменьшить потребление биохимической энергии, а с другой — интенсифицировать продукционный процесс в биосфере, то есть поднять последнюю на более высокий энергетический уровень.

В этой связи перед человеком стоит двойная задача:

- повышение энергетического уровня биогеоценозов и всей биосферы, усиление продукционного процесса и ускорение биогеохимических циклов;
- обеспечение их стабильности.

Современная наука и передовая практика доказывают, что за счет правильного использования биосферных ресурсов, путем преобразования абиотической среды во всех географических поясах и создания набора новых видов и сортов продуцентов, можно до-

стичь 1-2 % использования солнечной энергии. Таким образом, назрел вопрос рационального использования человечеством энергии ветра, солнца, приливов, отливов и продукции продуцентов мирового океана. В этом случае можно достичь 7-10 % использования продуцентами солнечной энергии и 5-20 % энергии абиотического круговорота [1].

Агроэкосистемы получают дополнительный поток энергии (дополняющий или даже заменяющий солнечную) в результате деятельности человека в виде мышечных усилий человека и животных, удобрений, пестицидов, поливной воды, работы машин (действующих на горючем топливе) и т.д. и характеризуются, как правило, более высокой биологической продуктивностью [2].

Сущность ведения сельского хозяйства заключается в использовании энергии и материалов с целью повышения продуктивности агроэкосистем для получения максимума продукции, необходимой для удовлетворения экономии энергетических затрат, нормального функционирования экономики и производства сельскохозяйственной продукции. На пороге грядущего тысячелетия это становится одной из ключевых задач.

В сельском хозяйстве расходуется около 15 % энергии от всех производственных энергозатрат человечества. Следовательно, мерой производственных возможностей общества может служить его энергетический бюджет. В этой связи проблема роста объемов продовольствия – это проблема энергетическая, поскольку на каждую калорию продовольствия приходится затрачивать от 1,5 до 4,5 калорий энергии, материализованной в средствах производства [3]. Использование энергии удобрений и пестицидов, поливной воды, топлива в машинах повышает кратность энергии труда на стадии опосредования обмена веществ. Использование солнечной радиации возделываемыми растениями приумножает энергию труда и машин вместе взятых.

Анализ энергетических затрат и сопоставление их с общим объемом продуктов фотосинтеза позволяет понять реальную роль растениеводства, как важнейшей отрасли АПК, в стабилизации окружающей среды и эффективности аграрного сектора. В растениеводстве из всей затраченной в период вегетации растений энергии солнечных лучей значительная ее часть расходуется на обеспечение процессов транспирации и дыхания, на развитие вегетативных органов растений и т.д. На формирование же непосредственно урожая расходуется небольшая часть энергии поглощенных солнечных лучей, а в итоге соотношение между аккумулированной в урожае энергии Солнца и затраченной энергией невосполнимых энергоресурсов при интенсивном ведении сельскохозяйственного производства, в лучшем случае, не превышает 1:5 [3,4,5].

Исследователи отмечают, что с энергетической точки зрения величина биоэнергетического коэффициента, служащего для оценки энергетической эффективности растениеводства, должна стремиться к 1 и даже превышать ее. В этом случае сельское хозяйство имеет возможность перекрыть расходы совокупной энергии производством органического вещества. Так, на примере зерновых культур, с их высокой калорийностью, установлено, что можно получить величину биоэнергетического коэффициента на уровне 2,13 относительных единиц. В садоводстве эта величина пока не достигнута, так как велик временной разрыв между закладкой насаждений и получением урожаев. Кроме того, значительное время требуется для выращивания посадочного материала: проходит не один год, когда энергия тратится и не восполняется готовой продукцией, да и энергетическая ценность плодов невелика. В то же время значение плодов состоит не столько в их питательной (энергетической), сколько в лечебно-оздоровительной ценности. Всем известно, что плоды являются источником витаминов и других жизненно важных элементов для организма человека. Повышение энергетической эффективности садоводства возможно за счет перехода к современным слаборослым типам садов. Эти сады должны характеризоваться быстрым вступлением в пору промышленного плодоношения и коротким периодом эксплуатации. Также следует использовать скороплодные, высокоурожайные, устойчивые к факторам внешней среды сорта, обеспечивающие получение высоких урожаев с меньших площадей. Это позволяет повысить уровень использования вовлекаемой в производство плодов энергии и обеспечить их высокоэффективное в энергетическом отношении выращивание, снизив при этом антропогенную нагрузку на окружающую среду.

Объекты и методы исследований. В наших исследованиях по оценке энергетической эффективности выращивания посадочного материала яблони для интенсивных агроценозов в средней зоне садоводства России была проведена оценка энергозатратности выращивания клоновых подвоев и саженцев яблони по технологиям, разработанным кафедрой плодоводства Мичуринского ГАУ и ВНИИС имени И.В. Мичурина [6, 7]. При расчете затрат энергии, приходящейся на основные, оборотные средства производства и трудовые ресурсы, учитывались энергозатраты, вложенные в каждый вид и этап работы, выполняемой различными категориями работников, и определенным видом сельскохозяйственной техники с учетом массы каждой машины, времени ее работы, расхода удобрений, пестицидов, топлива и пр. В качестве основного источника данных по изучаемым технологиям использовались технологические карты, предоставленные специалистами вышеперечисленных научных подразделений [3, 4, 5].

Обсуждение результатов. Проведенные исследования показали, что при выращивании отводков различными методами, как вертикальным, так и горизонтальным [8], наибольшая статья затрат энергии приходится на оборотные средства производства (89-96 % в зависимости от технологии) (табл.).

Энергетический анализ выращивания клоновых подвоев яблони методами вертикальных и горизонтальных отводков по технологиям кафедры МичГАУ и ВНИИС им. И.В. Мичурина

	Энергозатраты при выращивании					
Статьи затрат	вертикальных отвод- ков по технологии МичГАУ		горизонтальных отводков			
			по технологии МичГАУ		по технологии ВНИИС им. И.В. Мичурина	
	МДж/га	%	МДж/га	%	МДж/га	%
1.Живой труд	16170,3	1,9	20376,1	2,9	21132,3	0,8
2.Основные средства производства (машины, орудия)	75333,4	8,7	73505,5	10,2	79758,2	3,2
3.Оборотные средства производства в т. ч. топливо	770771,5 605800,7	89,4 70,3	620210,5 443360,7	86,9 62,1	2415425,9 292055,5	96,0 11,6
прочие (удобрения, пестициды, семена для приманок, электроэнергия)	164970,8	19,1	176849,8	24,8	2123370,4	84,4
Всего затрат	862275,2	100	714092,1	100	2516316,4	100

Среди этих затрат основной расход энергии идет прежде всего на топливо – 62-70%, соответственно, по технологиям МичГАУ при горизонтальном и при вертикальном выращивании отводков, в то время как по технологии ВНИИС им. И.В. Мичурина в структуре оборотных средств наибольшая доля энергозатрат приходится на мульчирующий материал – опилки, а расходы на топливо составляют лишь 12 %. Затраты на основные средства производства не превышают 9-10 %, а на трудовые ресурсы приходится 1-3 %. Учитывая, что выход с 1 га по технологии МичГАУ при вертикальном способе выращивания ежегод-

но составляет в среднем 65 тыс. отводков, можно заключить, что на выращивание одного отводка затрачивается в среднем 1,06 МДж.

Энергетическая оценка рассматриваемых технологий производства клоновых подвоев яблони методом горизонтальных отводков в различных модификациях показала, что применение мульчирующих материалов делает выращивание более энергозатратным — практически в 3,5 раза в расчете на единицу площади, но в пересчете на 1 полученный подвой эти различия нивелируются и составляют, по технологии кафедры плодоводства МичГАУ, — 7,1 МДж при выходе 100 тыс./га, а по технологии ВНИИС им. И.В. Мичурина — 8,4 МДж, за счет большего выхода подвоев — 300 тыс./га (по данным Л.В. Григорьевой).

Анализ выращивания саженцев яблони методом окулировки и зимней прививки на слаборослых клоновых подвоях показал [9], что наибольшая статья затрат энергии приходится, как и при производстве подвоев, на оборотные средства -72.8 и 60.1 % соответственно при окулировке и зимней прививке. Среди них основной расход энергии также идет прежде всего на топливо -57-59 %. Затраты на основные средства производства составляют 23.9 и 36.6 % соответственно, а на трудовые ресурсы -3.3 % по обеим технологиям.

На выращивание 1 саженца (при выходе 40 тыс.шт./га) расходуется 4,6 МДж при использовании окулировки и 2,2 МДж при зимней прививке. С учетом энергии, затрачиваемой на получение подвоев методом вертикальных отводков, как наименее энергоемкого по нашим расчетам в сравнении с различными модификациями горизонтального метода, выращивание 1 саженца обходится в 5,7 и 3,3 МДж, соответственно, при окулировке и зимней прививке. Таким образом, зимняя прививка является фактически энергосберегающим приемом при выращивании посадочного материала яблони, сокращая затраты энергии в 1,7 раза в расчете на один саженец. Из анализа полученных в иследовании данных следует вывод, что наиболее энергоемкой является технология получения саженцев путем зимней прививки с использованием подвоев, выращенных методом вертикальных отводков.

Литература

- 1. Вронский, В.А. Прикладная экология: учебн. пособие / В.А. Вронский. Ростов н/Д.: Феникс, 1996. 512 с.
- 2. Дювиньо, П. Биосфера и место в ней человека (экологические системы и биосфера) / П. Дювиньо, М. Танг. М.: Прогресс, 1973. 270 с.
- 3. Афонин, Н.М. Биоэнергетическая оценка технологий производства продукции растениеводства / Н.М. Афонин, Н.Н. Бабич, В.О. Степанцов, В.Ф. Томилин. Мичуринск, 1997. 57 с.
- 4. Зезюков, Н.И. Методические указания по расчету энергетической эффективности агротехнологий с использованием ПЭВМ / Н.И. Зезюков, А.В. Дедов, Н.И. Придворев. Воронеж, 1993. 45 с.
- 5. Грязев, В.А. Роль растениеводства в стабилизации условий окружающей среды / В.А Грязев, С. Столяров // Научные основы устойчивого садоводства в России. ВНИИС им. И.В. Мичурина, 1999. С. 40-42.
- 6. Выращивание саженцев яблони на слаборослых подвоях в средней зоне садоводства $PC\Phi CP$ (рекомендации). Росагропромиздат, 1988. 84 с.
- 7. Григорьева, Л.В. Интенсивная технология производства отводков в горизонтальном маточнике клоновых подвоев яблони с применением органического субстрата (рекомендации) / Л.В. Григорьева, И.В. Муханин. Мичуринск Наукоград, 2007. 64 с.
- 8. Курьянова, Е.Н. Энергетическая оценка технологий выращивания клоновых подвоев яблони в маточнике горизонтальных отводков / Е.Н. Курьянова // Вестник МичГАУ. -2011. -№ 2. Ч. 1. С. 33-35.
- 9. Курьянова, Е.Н. Энергетическая оценка выращивания саженцев яблони с учетом погодных условий / Е.Н. Курьянова, Л.В. Бобрович, Н.Я. Каширская. // Плодоводство и ягодоводство России. Т. XXXII. Ч. 2. 2012. С. 208-212.